MATH 54 - HINTS TO HOMEWORK 5

PEYAM TABRIZIAN

Here are a couple of hints to Homework 5! Enjoy :)

Section 1.8: Introduction to Linear Transformations

1.8.1. Calculate $A \mathbf{u}$ and $A \mathbf{v}$.
1.8.3, 1.8.9, 1.8.11. Just solve the equation $A \mathbf{x}=\mathbf{b}$, where in 1.8 .3 , \mathbf{b} is given, in 1.8.9, $\mathbf{b}=\mathbf{0}$, and in 1.8.11, \mathbf{b} is also given.
1.8.17. Use the fact that $T(3 \mathbf{u})=3 T(\mathbf{u}), T(2 \mathbf{v})=2 T(\mathbf{v})$ and $T(3 \mathbf{u}+2 \mathbf{v})=3 T(\mathbf{u})+$ $2 T(\mathbf{v})$.

1.8.21.

(a) T (it's a function with two 'linearity' properties)
(b) $\mathrm{F}\left(\mathbf{R}^{5}\right.$. Think in terms of variables, there are 5 variables here)
(c) F (Consider $A=$ the 0 -matrix, then the range is just $\{\mathbf{0}\}$. All that we know is that the range is a subspace of \mathbb{R}^{m})
(d) technically F (this is complicated, but for finite-dimensional vector spaces, every linear transformation is a matrix transformation, but for infinite-dimensional v.s. there are some linear transformations which cannot be represented by a matrix, like $T(y)=y^{\prime}$)
(e) T (the 'only if' implication is easy, for the 'if' part, consider $c_{1}=c_{2}=1$ and $\left.c_{2}=0\right)$
1.8.29.
(a) Show $f(x+y)=f(x)+f(y)$ and $f(c x)=c f(x)$ where c is in \mathbb{R}
(b) Remember that $T(\mathbf{0})=\mathbf{0}$ for any linear transformation!
(c) It's called linear because its graph is a line! Here the French terminology is better: They call $f(x)=m x$ a linear function (fonction lineaire), but $f(x)=m x+b$ an affine function (fonction affine)
1.8.32. Find two explicit points $\mathbf{x}=\left(x_{1}, x_{2}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}\right)$ such that $T(\mathbf{x}+\mathbf{y}) \neq$ $T(\mathbf{x})+T(\mathbf{y})$, OR find an explicit point $\mathbf{x}=\left(x_{1}, x_{2}\right)$ and an explicit constant c such that $T(c \mathbf{x}) \neq c T(\mathbf{x})$. It's important that your examples be explicit! For example, $\mathbf{x}=(0,1)$ and $c=-2$ work! In general, things with absolute values or x^{2} terms or $\sin (x)$ terms will not be linear!
1.8.33. Remember that $T(\mathbf{0})=\mathbf{0}$

Date: Friday, July 5th, 2012.

Section 1.9: The matrix of a Linear transformation

For all of those questions, all you need to find is $T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right)$, and sometimes $T\left(\mathbf{e}_{3}\right)$, where $\mathbf{e}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ or $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, etc. and put all the vectors your found in a matrix!
19.11. Calculate the matrix of T. The angle of rotation is π radians (180 degrees).
1.9.23.
(a) \mathbf{T} (in other words, if you know $T\left(\mathbf{e}_{\mathbf{1}}\right), T\left(\mathbf{e}_{\mathbf{2}}\right), \cdots, T\left(\mathbf{e}_{\mathbf{n}}\right)$, you know T)
(b) \mathbf{T} (see example 3)
(c) \mathbf{F} (the composition of two linear transformations is a linear transformation, see chapter 4)
(d) \mathbf{F} (onto means every vector in \mathbb{R}^{n} is in the image of T)
(e) \mathbf{F} (let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$, then the columns of A are linearly independent, and hence T is one-to-one by theorem $12 b$)
1.9.36. The hint the book gives is a bit complicated! It's easier to calculate $T(S(\mathbf{u}+\mathbf{v}))$ and $T(S(c \mathbf{u}))$. First use the fact that S is linear, then use the fact that T is linear!

SECTION 5.4: EIGENVECTORS AND LINEAR TRANSFORMATIONS

For all the questions in the section, you need to do the following 3 things:

1) For every element $\mathbf{b}_{\mathbf{i}}$ in the basis, calculate $T\left(\mathbf{b}_{\mathbf{i}}\right)$
2) Calculate $\left[T\left(\mathbf{b}_{\mathbf{i}}\right)\right]_{\mathcal{C}}$, i.e. the code of $T\left(\mathbf{b}_{\mathbf{i}}\right)$ with respect to the output-basis \mathcal{C}
3) Put all the vectors you found in a matrix!
5.4.1. The matrix in question is $A=\left[\begin{array}{lll}{\left[\mathbf{T}\left(\mathbf{b}_{\mathbf{1}}\right)\right]_{\mathcal{D}}} & {\left[\mathbf{T}\left(\mathbf{b}_{\mathbf{2}}\right)\right]_{\mathcal{D}}} & \left.\left[\mathbf{T}\left(\mathbf{b}_{\mathbf{3}}\right)\right]_{\mathcal{D}}\right]\end{array}\right.$
5.4.2. The matrix in question is $A=\left[\begin{array}{ll}{\left[\mathbf{T}\left(\mathbf{d}_{\mathbf{1}}\right)\right]_{\mathcal{B}}} & {\left[\mathbf{T}\left(\mathbf{d}_{\mathbf{2}}\right)\right]_{\mathcal{C}}}\end{array}\right]$
5.4.3. Remember how to do the problem! The other problems are similar! Also, remember that $\mathbf{e}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=(1,0,0)$ etc.

5.4.5.

(a) $T(p)=(t+5)\left(2-t+t^{2}\right)=10-3 t+4 t^{2}+t^{3}$
(b) Show $T(p+q)=T(p)+T(q)$ and $T(c p)=c T(p)$ where c is a constant
(c) Calculate $T(1), T\left(t^{2}\right), T\left(t^{3}\right)$ and find the 'code' of each of the polynomials you found! Careful about the order!
5.4.7. Calculate $T(1), T(t), T\left(t^{2}\right)$ and find the 'code' of each polynomial you found! Again, careful about the order! For example, the code of $T(1)=3+5 t$ is $\left[\begin{array}{l}3 \\ 5 \\ 0\end{array}\right]$, and not $\left[\begin{array}{l}0 \\ 5 \\ 3\end{array}\right]$
5.4.9. For (b) Show $T(\mathbf{p}+\mathbf{q})=T(\mathbf{p})+T(\mathbf{q})$ and $T(c \mathbf{p})=c T(\mathbf{p})$, for (c), calculate $T(1), T(t)$ and $T\left(t^{2}\right)$. For (c), this is just like 5.4.7, except finding the code is much easier!
5.4.11. $A=\left[\left[\mathbf{T}\left(\mathbf{b}_{\mathbf{1}}\right)\right]_{\mathcal{B}}\left[\mathbf{T}\left(\mathbf{b}_{\mathbf{2}}\right)\right]_{\mathcal{B}}\right]$. That is, calculate $T\left(\mathbf{b}_{\mathbf{1}}\right)$ and $T\left(\mathbf{b}_{\mathbf{2}}\right)$ and express your answer in terms of $\mathbf{b}_{\mathbf{1}}$ and $\mathbf{b}_{\mathbf{2}}$.

